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Using numerical simulations, we study immiscible two-phase flow in a pore network reconstructed from
Berea sandstone under flow conditions that are statistically invariant under translation. Under such conditions,
the flow is a state function which is not dependent on initial conditions. We find a second-order phase transition
resembling the phase inversion transition found in emulsions. The flow regimes under consideration are those
of low surface tension—hence high capillary numbers Ca—where viscous forces dominate. Nevertheless,
capillary forces are imminent, we observe a critical stage in saturation where the transition takes place. We
determine polydispersity critical exponent �=2.27�0.08 and find that the critical saturation depends on how
fast the fluids flow.
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I. INTRODUCTION

There are several similarities between emulsions and two-
phase flow of immiscible fluids in porous media. The two
fluids, e.g., oil and water, would by themselves demix. How-
ever, in the porous medium the capillary forces, caused by
the interactions between the solid matrix and the fluid inter-
faces, stabilize the fluid phases. In some sense the solid ma-
trix acts as a “frozen” emulsifier. This leads to large differ-
ences between the two types of systems, since in one case the
emulsifier follows the motion of the two fluids, whereas in
the other case, the “emulsifier” is static. In emulsions, Ban-
croft’s rule of thumb states that the more soluble phase con-
stitutes the continuous phase �1�. This rule may be broken,
but at least one of the fluids must form a continuous phase.
In porous media on the other hand it is the solid matrix—the
“static emulsifier”—that forms the continuous phase,
whereas neither of the fluids needs to form a continuous
phase.

Typically, experiments on two-phase flow in porous me-
dia are performed through flooding of an already saturated
sample by another fluid �2�. Under such boundary condi-
tions, the analogy with emulsions is not strong. However, as
we shall see, under conditions where the two phases form
structures that statistically have the same translational sym-
metries as the porous matrix, the analogy makes sense. We
will in the following assume that the porous matrix is statis-
tically invariant under translation.

We will in this paper study numerically the two-phase
flow under such conditions using the reconstructed pore

space of a Berea sandstone. As we will show, there is a phase
transition resembling the phase inversion transition occurring
in emulsions. This transition is driven by the interplay be-
tween pore-scale capillary forces and long-range viscous
forces, and it concerns the distribution of clusters �bubbles�
of the nonwetting fluid. We shall furthermore see that the
transition, which is second order in character, depends not
only on parameters such as the saturation but also on the
flow rate. This is caused by the relative strength of the vis-
cous forces to the capillary forces changing with the flow
rate.

There have been studies of steady-state two-phase flow in
the past, e.g., the “Penn State” method for measuring relative
permeability requires steady-state conditions �3�. Avraam et
al. �4� studied the dynamics of clusters in two-dimensional
model porous media under simultaneous injection and flow
of two immiscible fluids. This work has been followed up by
a numerical work by Constantinides and Payatakes �5�.
Hashemi et al. �6,7� generalized the invasion percolation al-
gorithm to study steady-state flow numerically in the limit of
capillary dominance.

II. STEADY-STATE MODEL

Steady-state conditions are defined in the literature as
those characterized by statistical stationarity with respect to
time. This definition is not equivalent to a state which is
statistically invariant under spatial translation. Such a state is
achievable in experiments involving simultaneous injection,
but as the system is open, important flow parameters such as
saturation are difficult to control �8�. We will in the following
refer to the statistically translational invariant state as the
steady state.
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Using a numerical model which has been thoroughly
tested against experimental model porous media in two di-
mensions �9�, we create such steady-state flow as described
above, where we have full control over all flow parameters.
An important observation is that the steady state at higher
capillary numbers is independent of the initial conditions,
i.e., it retains no memory of how it was started. It is a true
state in the sense used in thermodynamics. Hence, the phase
transition we study resembles closely those seen in equilib-
rium statistical mechanics.

We show in Fig. 1 the reconstructed network. It contains
12 349 nodes and 26 146 links including 521 links that make
up the inlet and outlet of the original network. The sample
from which it is reconstructed measured �3�3�3 mm3�,
with a total area of the inlet links of 0.225 mm2. More de-
tails on network reconstruction procedures may be found in
the work of Øren et al. �10�.

In order to create steady-state flow in this system, we
need to impose periodic boundary conditions in the flow di-
rection. This enables the configurations that leave the net-
work at one side to enter the network at the opposite side. It
is not possible to do this as the edges of the network do not
match each other. We solve this problem by making a mirror
copy of the network and connecting this copy in series with
the original network, see Fig. 1. The edges then match and
periodic boundary conditions in the flow direction may now
be implemented.

Each bond in the network is characterized by the number
of parameters that reflect the original pore in the original
sandstone. The pores are triangular in shape, and each pore
consists of two parts that make up the pore body and one part
that connects them which resembles the pore throat. Each
part is described by a shape factor G defined as the effective
area of the pore divided by the square of its circumference.
We assume that the wetting properties of the two fluids are
such that the film flow does not occur, and the flow in the
pores is assumed to be pistonlike. The mobility gij of a bond
between nodes i and j is calculated from an average of the
mobilities coming from the bodies and the throat. The single
terms are given by

g = �3r2A�/�20�eff� , �1�

where r is the inscribed radius of the pore defined by A
=r2 / �4G�, which is the effective cross-sectional area. The
effective viscosity �eff is the weighted average of the viscosi-
ties of the two fluids for each bond.

If pi and pj are the pressures at nodes i and j, respectively,
so that �pij = pi− pj, the flux between them is given by

qij =
gij

�ij
��pij − pc� , �2�

where pc is the capillary pressure and �ij is the length be-
tween the center of the two pore bodies making up the nodes.

The capillary pressure pc, which acts as a barrier for the
nonwetting fluid to penetrate a pore body filled with wetting
fluid, is calculated using the contact angle � between the
wetting and the nonwetting phases as pc= �2� /r�cos �. In a
more realistic case the contact angle is different in drainage
and imbibition. The bonds are assumed to be hour glass
shaped so that the dependence of the capillary pressure with
respect to the position of the meniscus, x in the pore, is

pc =
2�

r�
�1 − cos�2	x

�
�� . �3�

The radius r� denote the throat radius which is the narrowest
part of the pore space.

The flow equations are solved as a large set of linear
equation, ensuring that the net flux in a node is zero accord-
ing to mass conservation of immiscible fluids, 	 jqij =0. We
assume pistonlike creep flow in the links, and the volumes of
both pore bodies and throats are associated with these links,
leaving the nodes volumeless. A forward Euler integration
scheme is implemented for tracking the motion of the inter-
faces. We use, however, an adaptive time step �t so that the
displacement of any given meniscus does not exceed a tenth
of �.

There are three dimensionless parameters that character-
izes the two-phase flow: �1� the viscosity ratio M =�nw /�w
between the nonwetting and wetting fluids, �2� the saturation,
Snw, which is the fraction of fluid in the porous medium that

(b)(a)

FIG. 1. �Color online� The network reconstructed from a Berea sandstone sample. The upper figure shows the original network �gray �red
online�� with the inlet and outlet links colored white. In the lower figure the network is mirrored around the plane normal to the pressure
gradient. This makes it possible to implement periodic boundary conditions in the flow direction.
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is nonwetting, and �3� the capillary number Ca, given by the
ratio of the viscous to the capillary forces on the pore level,

Ca =
�effQ

�

, �4�

where 
 is the area of the cross section of the porous me-
dium and Q is the global flow rate. We assume the phases to
be equal in density so that buoyancy effects may be ne-
glected.

We set the surface tension to a low value �
=0.03 mN /m and viscosity for the wetting and nonwetting
fluids to �nw=�w=0.1 Pa s so that M =�nw /�w=1. In order
to control Ca we change the global flow rate Qtot. The cap-
illary numbers were varied from Ca
1.0�10−4 to Ca

1.0, corresponding to superficial fluid velocities ranging
from vs
1 mm /h to vs
1 mm /s. Given the values of Ca,
we are definitely in a flow regime dominated by viscous
forces. However, the fluid phases remain immiscible and a
steady-state configuration of the structures and macroscopic
parameters is obtainable. We also note that since the system
is closed, the saturation is set initially and does not change as
the flow proceeds. The configuration shown in Fig. 2 was run
on a single dual core processor with 2.4 GHz.

III. RESULTS

Our supreme hypothesis is that the steady-state fluid con-
figurations do not depend on how the system started out but
rather on the statistically invariant physical parameters acting
on the system. It is nevertheless very interesting to observe
and quantify how our system evolves into a steady-state be-
havior with transients which subsequently vanish.

Shown in Fig. 2 is a starting configuration of totally sepa-
rated halves of hence wetting and nonwetting fluids. As a
global pressure gradient �P /L is applied over the network of
length L, the phases start to mobilize and create two distinct
fronts, one of imbibition and one of drainage. This leads to
forming of local meniscii between the different phases, and
resistance caused by capillary forces will alter the transport.
In order to keep a constant flow rate independent of the in-
creased resistance, the global pressure drop �P will as a
consequence increase.

This effect is shown in Fig. 3 and is clearly observable
even though the flow regimes considered in this paper is in
the viscous regime. A seemingly linear rise in �P is gov-
erned by the increasing number of fingers and meniscii in the
network which at steady state will saturate around a mean

(b)(a)

(c) (d)

FIG. 2. �Color online� The evolution toward steady-state flow when the flux is Qtot=1.0�10−2 mm3 /s giving Ca=3.0�10−3. The
system is initially divided into two distinct regions with one nonwetting phase �white� and one wetting phase �gray �red online��. The three
following snapshots show the system at t�30 s, t�90 s, and when the flow has reached steady state. The reader should note the fingering
front where the nonwetting fluid enters the wetting fluid and the stable displacement front where the wetting fluid enters the nonwetting fluid
in the two upper panels �11�.
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value. This is emphasized in the fluctuating pressure with a
time invariant average value. Since the physical length of the
network L=6 mm is small, the pressure drop �P�300 Pa
is also relatively small.

When the system is started out in a completely different
matter, where the phases are totally mixed randomly before
the simulation, we see the same behavior in pressure at
steady state as shown in Fig. 4. However, the relaxation is
much faster, and the transients vanish at an earlier stage.
Hence, the system is initially closer to steady state, but the
outcomes of the two ways of setting up the system are sta-
tistically similar.

Even though we claim that the steady-state fluid configu-
rations are independent of how the system started out, they
do adjust to the physical regime to which they are subjects.
Changes in the interplay between drainage and imbibition
controlled by the capillary number Ca, and in the saturation
of the phases, will affect how the fluids organize. In steady-
state fluid clusters may break up and smaller clusters merge
together, but the statistical distribution of these should, how-
ever, stay invariant.

A. Fluid cluster distribution

We study the distribution of clusters of nonwetting fluid.
The size of a cluster is denoted as s, and the distribution of

cluster sizes is N�s�. At a given saturation of nonwetting
fluid, a spanning cluster occurs in a way resembling the per-
colation transition. Near this phase transition, the cluster dis-
tribution will be dominated by a singularity, attaining the
scaling form

N�s� � s−�f� s

s�� , �5�

where f�u� is a cutoff function that decays faster than any
power of u for u�1 and is constant for u1. � is the poly-
dispersity critical exponent. There is also an issue in connec-
tion to how we define the clusters. Unlike pure percolation,
we here allow bonds in the network to be partly filled; hence
a criterion is needed to determine whether or not such a bond
contains a connecting part of a cluster. To do this we intro-
duce a clip level and say that two nodes in the network take
part in a nonwetting cluster if the level of wetting fluid sepa-
rating two nonwetting bubbles in the bond is less than the
value of the clip level. We justify the clip level by assuming
that small bubbles of wetting fluid will become unstable and
subsequently coat to the walls of the pore space. The issue of
how to classify clusters will also be present in experimental
studies. In the following we set the clip level to �1% of the
total volume in the pore space included in the connecting
bond.

According to Eq. �5� there is a characteristic cluster size
s� that controls the cutoff function in the cluster distribution
N�s�. For a given saturation of the nonwetting fluid Snw, the
cluster size distribution of this phase will undergo a transi-
tion where s� diverges—within the limits of finite-size
effects—and the cutoff function goes toward a constant. We
denote this point as the critical saturation Sc. For low values
of Snw, only small disconnected nonwetting clusters will ap-
pear, but as Sc is approached from below, larger spanning
clusters form. For values of Snw significantly larger than Sc,
most of the phase saturation is found within the largest ap-
pearing cluster and consequently the cutoff function in Eq.
�5� reappears. In Fig. 5, different values of Snw are shown.
We see a transition where large clusters form in the system as
Snw is increased.

The distribution of nonwetting clusters shown in Fig. 6
yields a value of the polydispersity exponent �=2.27�0.08
for Ca�10−2. This is higher than the value for ordinary
three-dimensional percolation, which is ��2.18 �12�. It is
interesting to note that in �13� a value of � less than the
two-dimensional percolation value was reported for a simu-
lation using a regular square lattice. However, there is no
reason why one should expect percolation behavior in this
system, as the clusters here are highly correlated through the
viscous force fields mediated through the tortuous pore
space. Also, due to the capillary forces, the nonwetting fluid
has a much higher tendency to occupy the volume around the
pore bodies than the wetting fluid �14�, here represented by
the volume around the nodes in the network. In addition,
small fractions of wetting fluid can effectively break off large
nonwetting clusters and hence alter the situation compared to
percolation.

We started out this work by pointing out the similarities
between the problem at hand and emulsions. The polydisper-
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FIG. 3. Time evolution of the pressure in the simulation shown
in Fig. 2. Prior to steady state there is a transient period where
fronts develop and the pressure rises. At steady state the pressure
fluctuates around a mean value.
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FIG. 4. Pressure as a function of time for a simulation starting
with the two phases completely mixed. The relaxation of the pres-
sure is faster than for that of Fig. 3.
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sity exponent has been measured, e.g., in micellar solution of
sodium dodecyl sulfate, and it has been found to be consis-
tent with the prediction of the dynamical droplet model,
which is �=2.21 �15�. This value is different from the one we
report here but quite similar to the ordinary three-
dimensional percolation.

The fact that fluid volume is unequally distributed
throughout our network with a much larger fraction directly
around the nodes will affect values of both Sc and �. The
values of Sc, where we obtain power-law distributions of the
cluster sizes, are significantly higher than for similar net-
works in pure percolation �12�, but Sc is a critical point that
is highly dependent on the model and flow regimes in which
it is encountered. The whereabouts of this point will vary
from model to model and different materials and—as will be
discussed later in this paper—the nature of the flow.

However, within the framework of the critical processes
discussed above, it is believed that the value of � will be
invariant within large classes of topologically different me-
dia. Change in the viscosity ratio has been shown in many
studies, e.g., Refs. �16–18�, to have an impact on transient
regimes of drainage. Whether or not this will affect the criti-
cal behavior of the cluster size distribution in steady-state
processes is an open question. Experimental work has been
done on a quasi-two-dimensional bead pack with continuous
injection of air and a glycerol/water mixture to study fluid
cluster dynamics in steady state �8�. Air cluster dynamics has

also been studied experimentally on a similar model, inject-
ing air into a highly viscous defending fluid �19�. In both
cases the viscosity ratio M 
10−4 was far from unity. For
high Ca it was seen in both experiments that distinct tran-
sients such as viscous fingering became completely disinte-
grated after some time. This resembles the situation in our
simulations even though we use a different viscosity ratio.
We therefore believe that the underlying process of going
from transients to a steady-state situation is universal for a
wide range of viscosity ratios as long as the wetting condi-
tions stay invariant.

B. Critical saturation

For values of Snw�Sc there will be a finite probability
P��0 for a fragment of nonwetting fluid to be attached to
the largest spanning cluster. In order to calculate P� we iden-
tify the largest nonwetting cluster smax and define

P� =
smax

	
s

sN�s�
. �6�

This quantity is the order parameter of our system.
Since our system is finite, we see a gradual increase in P�

near Sc, making it harder to pinpoint exactly where the tran-
sition takes place. However, it is sharp enough to give clear
indications that the transition is indeed second order.

(b)(a)

(c) (d)

FIG. 5. �Color online� Four configurations of nonwetting clusters at steady state and Ca=1.5�10−2. For illustration only the largest
clusters are marked using different colors or grayscales which makes it possible to distinguish them even if they appear close to each other
in the model. In �a� Snw=0.59 with no large connected nonwetting clusters present. In �b�–�d� nonwetting saturation is Snw=0.65, Snw

=0.67, and Snw=0.71. Spanning nonwetting clusters start to form at Sc�0.7.
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Results for P� vs Snw for different Ca are shown in Fig. 7.
The spanning clusters of nonwetting fluid occur at satura-
tions well above 50%. This may not be taken as a reflection
of the Bancroft rule since this does not imply that the clusters
of wetting fluids form spanning clusters at low wetting satu-
ration.

The critical saturation, Sc, is defined as the value of Snw
for which P� has the largest derivative with respect to Snw.
We find that Sc depends on the capillary number Ca as �inset
of Fig. 7�

Sc = A + B log10�Ca� , �7�

with A=0.8 and B=0.063. However, the fluctuations in Sc
are extremely small compared to the range of Ca, and below
a value Ca�10−4 we do not see much changes in behavior.
Sc also flattens toward a constant for high Ca.

In the work by Payatakes and co-workers �4�, different
regimes of cluster transport under steady-state conditions

were proposed and studied. For relatively high Ca, a flow
regime denoted by drop-traffic flow was proposed, character-
ized by transport of small disconnected nonwetting blobs.
This was due to vigorous fragmentation of larger fluid clus-
ters and resembles well the processes we observe when tran-
sient nonwetting fluid patterns disintegrate an approaching
steady state. In a way this behavior resembles emulsion.
Nevertheless, beyond a certain threshold in Snw spanning
nonwetting clusters will form and eventually create con-
nected pathways through the system. Such a process was
also discussed in the aforementioned studies. We have ar-
gued that this threshold is dependent on Ca and is related to
the equilibrium process of continuously dynamic breakup
and coalescence of clusters at steady state. In the extreme
case of very high Ca, i.e., zero capillary forces, emulsion
should be present in the entire range of Snw, hence a critical
saturation close to unity.

Recent experimental flooding studies �20� using x-ray mi-
crotomography to detect immiscible organic fluids on pore
scale indicate that the surface area-to-volume ratio of indi-
vidual clusters decrease when the saturation decreases. This
is consistent with our Fig. 5 where we see a clear cutoff for
the large clusters for Snw�Sc.

IV. CONCLUSION

In this paper we have aimed to study structure formation
of nonwetting fluid clusters during two-phase flow in porous
media under steady-state conditions. We observe that the
flow configuration indeed forms a state in that it does not
depend on how the system is initially prepared. However, the
saturations of the phases largely affect the steady-state con-
figurations, and we claim that there is a second-order perco-
lationlike phase transition resembling the phase inversion
transition occurring in emulsions. We determine one critical
exponent that characterizes this transition and find it to be
different from that of the corresponding percolation problem
and the exponent measured in amphiphilic systems. In con-
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FIG. 6. �Color online� Frequency of nonwetting clusters, where
the sets ���, �+�, ���, and ��� are distributions from the realiza-
tions in Figs. 5�a�–5�d�. The sets are artificially separated for clarity.
The actual frequencies are shown in the inset. In the lower figure
the nonwetting cluster size distribution for an average over 20
samples with different initial configurations is displayed. The slope,
which is a guide for the eyes, indicates a critical exponent �
=2.27�0.08 over the range where the power-law behavior applies.
In the inset the respective cumulative distribution is displayed with
a draw slope of �+1. The actual descent is not that steep.
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nection to this critical behavior, we have also observed that
the critical saturation, Sc, is a function of the capillary num-
ber, i.e., the global flow rate Q. This may be of importance
when such flow occurs in radial geometries where the flow
becomes faster, closer to the core. Our results indicate that
the possibility of a phase inversion transition may occur at
some radius.
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